A Multiwavelength Study of ELAN Environments (AMUSE2). Detection of a Dusty Star-forming Galaxy within the Enormous Lyα Nebula at z=2.3 Sheds Light on its Origin

Author:

Chen Chian-ChouORCID,Arrigoni Battaia FabrizioORCID,Emonts Bjorn H. C.ORCID,Lehnert Matthew D.ORCID,Prochaska J. XavierORCID

Abstract

Abstract We present ALMA observations on and around the radio-quiet quasar UM 287 at z = 2.28. Together with a companion quasar, UM 287 is believed to play a major role in powering the surrounding enormous Lyα nebula (ELAN), dubbed the Slug ELAN, that has an end-to-end size of 450 physical kpc. In addition to the quasars, we detect a new dusty star-forming galaxy (DSFG), dubbed the Slug-DSFG, in 2 mm continuum with a single emission line consistent with CO(4−3). The Slug-DSFG sits at a projected distance of 100 kpc southeast from UM 287, with a systemic velocity difference of −360 ± 30 km s−1 with respect to UM 287, suggesting it is a possible contributor to the powering of the Slug ELAN. With careful modeling of the SED and dynamical analyses, it is found that the Slug-DSFG and UM 287 appear low in both gas fraction and gas-to-dust ratio, suggesting environmental effects due to the host’s massive halo. In addition, our Keck long-slit spectra reveal significant Lyα emissions from the Slug-DSFG, as well as a Lyα tail that starts at the location and velocity of the Slug-DSFG and extends toward the south, with a projected length of about 100 kpc. Supported by various analytical estimates we propose that the Lyα tail is a result of the Slug-DSFG experiencing ram pressure stripping. The gas mass stripped is estimated to be about 109 M , contributing to the dense warm/cool gas reservoir that is believed to help power the exceptional Lyα luminosity.

Funder

Ministry of Science and Technology of Taiwan

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3