ALMA survey of a massive node of the Cosmic Web at z  ∼  3

Author:

Pensabene A.ORCID,Cantalupo S.,Cicone C.ORCID,Decarli R.,Galbiati M.ORCID,Ginolfi M.,de Beer S.ORCID,Fossati M.ORCID,Fumagalli M.,Lazeyras T.,Pezzulli G.ORCID,Travascio A.,Wang W.,Matthee J.,Maseda M. V.

Abstract

Submillimeter surveys toward overdense regions in the early Universe are essential for uncovering the obscured star formation and the cold gas content of assembling galaxies within massive dark matter halos. In this work, we present deep ALMA mosaic observations covering an area of ∼2′×2′ around MUSE Quasar Nebula 01 (MQN01), one of the largest and brightest Ly-α emitting nebulae discovered thus far; it surrounds a radio-quiet quasar at z ≃ 3.25. Our observations target the 1.2 and the 3 mm dust continuum as well as the carbon monoxide CO(4–3) transition in galaxies in the vicinity of the quasar. We identify a robust sample of 11 CO-line-emitting galaxies (including a closely separated quasar companion) that lie within ±4000 km s−1 of the quasar systemic redshift. A fraction of these objects were missed in previous deep rest-frame optical/UV surveys, which highlights the critical role of (sub)millimeter imaging. We also detect a total of 11 sources revealed in the dust continuum at 1.2 mm; six of them have either high-fidelity spectroscopic redshift information from rest-frame UV metal absorptions or the CO(4–3) line that places them in the same narrow redshift range. A comparison of the CO luminosity function and 1.2 mm number count density with those of the general fields points to a galaxy overdensity of δ > 10. We find evidence of a systematic flattening at the bright end of the CO luminosity function with respect to the trend measured in blank fields. Our findings reveal that galaxies in dense regions at z ∼ 3 are more massive and significantly richer in molecular gas than galaxies in fields, which enables a faster and accelerated assembly. This is the first in a series of studies aimed at characterizing one of the densest regions of the Universe found so far at z > 3.

Funder

European Research Council

Fondazione Cariplo

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3