Longitudinally Modulated Dynamo Action in Simulated M-dwarf Stars

Author:

Bice Connor P.ORCID,Toomre JuriORCID

Abstract

Abstract M-dwarf stars are well known for the intense magnetic activity that many of them exhibit. In cool stars with near-surface convection zones, this magnetic activity is thought to be driven largely by the interplay of convection and the large-scale differential rotation and circulations it establishes. The highly nonlinear nature of these flows yields a fascinatingly sensitive and diverse parameter space, with a wide range of possible dynamics. We report here on a set of three global MHD simulations of rapidly rotating M2 (0.4 M ) stars. Each of these three models established nests of vigorous convection that were highly modulated in longitude at low latitudes. Slight differences in their magnetic parameters led each model to disparate dynamo states, but the effect of the convective nest was a unifying feature. In each case, the action of longitudinally modulated convection led to localized (and in one case, global) reversals of the toroidal magnetic field, as well as the formation of an active longitude, with enhanced poloidal field amplitudes and flux emergence.

Funder

NASA Astrophysical Theory Program

NASA Heliophysics

NASA FINESST

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3