Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way

Author:

Malhan KhyatiORCID,Rix Hans-WalterORCID

Abstract

Abstract Using Gaia Data Release 3 astrometry and spectroscopy, we study two new substructures in the orbit–metallicity space of the inner Milky Way: Shakti and Shiva. They were identified as two confined, high-contrast overdensities in the (L z , E) distribution of bright (G < 16) and metal-poor (−2.5 < [M/H] < − 1.0) stars. Both have stellar masses of M ≳ 107 M , and are distributed on prograde orbits inside the solar circle in the Galaxy. Both structures have an orbit-space distribution that points toward an accreted origin; however, their abundance patterns—from APOGEE—are such that are conventionally attributed to an in situ population. These seemingly contradictory diagnostics could be reconciled if we interpret the abundances [Mg/Fe], [Al/Fe], [Mg/Mn] versus [Fe/H] distribution of their member stars merely as a sign of rapid enrichment. This would then suggest one of two scenarios. Either these prograde substructures were created by some form of resonant orbit trapping of the field stars by the rotating bar; a plausible scenario proposed by Dillamore et al. Or, Shakti and Shiva were protogalactic fragments that formed stars rapidly and coalesced early, akin to the constituents of the poor old heart of the Milky Way, just less deep in the Galactic potential and still discernible in orbit space.

Publisher

American Astronomical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trojan Globular Clusters: Radial Migration via Trapping in Bar Resonances;The Astrophysical Journal Letters;2024-07-31

2. Finding accreted stars in the Milky Way: clues from NIHAO simulations;Monthly Notices of the Royal Astronomical Society;2024-06-21

3. Applying machine learning to Galactic Archaeology: how well can we recover the origin of stars in Milky Way-like galaxies?;Monthly Notices of the Royal Astronomical Society;2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3