Particle Dynamics in 3D Self-gravitating Disks. I. Spirals

Author:

Baehr HansORCID,Zhu ZhaohuanORCID

Abstract

Abstract Spiral arms are distinctive features of many circumstellar disks, observed in scattered light, which traces the disk surface; millimeter dust emission, which probes the disk midplane; as well as molecular emission. The two leading explanations for spirals are wakes generated by a massive planet and the density waves excited by disk self-gravity. We use stratified 3D hydrodynamic shearing-box simulations including dust particles and disk self-gravity to investigate how gas and dust spirals in a self-gravitating disk depend on the simulation size, the cooling efficiency, and the aerodynamic properties of particles. We find that the opening angles of spirals are universal (∼10°) and not significantly affected by the size of the computational domain, the cooling time, or the particle size. In simulations with the biggest domain, the spirals in the gaseous disk become slightly more open with a higher cooling efficiency. Small dust follows the gaseous spirals very well, while intermediate-sized dust with dimensionless stopping time (St) close to 1 is more concentrated in the spirals and shows stronger spirals. However, large dust with St > 1 also shows spirals, which is different from some previous simulations. We identify that this is due to the gravity from the gas to the dust component. We show that when St ≳ Q, the gravitational force from the gaseous spirals on the dust particles becomes stronger than the particles’ aerodynamic drag force, so that the gas significantly affects these large particles through gravitational interaction. This has important implications for both spiral observations and planetesimal formation/dynamics.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of drag and gravity on dust concentration in a gravitationally unstable disc;Monthly Notices of the Royal Astronomical Society;2024-01-19

2. Filling in the gaps: can gravitationally unstable discs form the seeds of gas giant planets?;Monthly Notices of the Royal Astronomical Society;2023-05-24

3. The role of the drag force in the gravitational stability of dusty planet-forming disc – II. Numerical simulations;Monthly Notices of the Royal Astronomical Society;2023-05-11

4. Exciting spiral arms in protoplanetary discs from flybys;Monthly Notices of the Royal Astronomical Society;2023-03-13

5. The role of the drag force in the gravitational stability of dusty planet forming disc – I. Analytical theory;Monthly Notices of the Royal Astronomical Society;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3