Energy Transport during 3D Small-scale Reconnection Driven by Anisotropic Plasma Turbulence

Author:

Agudelo Rueda Jeffersson A.ORCID,Verscharen DanielORCID,Wicks Robert T.ORCID,Owen Christopher J.ORCID,Nicolaou GeorgiosORCID,Germaschewski KaiORCID,Walsh Andrew P.ORCID,Zouganelis IoannisORCID,Domínguez Santiago VargasORCID

Abstract

Abstract Energy dissipation in collisionless plasmas is a long-standing fundamental physics problem. Although it is well known that magnetic reconnection and turbulence are coupled and transport energy from system-size scales to subproton scales, the details of the energy distribution and energy dissipation channels remain poorly understood. Especially, the energy transfer and transport associated with 3D small-scale reconnection that occurs as a consequence of a turbulent cascade is unknown. We use an explicit fully kinetic particle-in-cell code to simulate 3D small-scale magnetic reconnection events forming in anisotropic and decaying Alfvénic turbulence. We identify a highly dynamic and asymmetric reconnection event that involves two reconnecting flux ropes. We use a two-fluid approach based on the Boltzmann equation to study the spatial energy transfer associated with the reconnection event and compare the power density terms in the two-fluid energy equations with standard energy-based damping, heating, and dissipation proxies. Our findings suggest that the electron bulk flow transports thermal energy density more efficiently than kinetic energy density. Moreover, in our turbulent reconnection event, the energy density transfer is dominated by plasma compression. This is consistent with turbulent current sheets and turbulent reconnection events, but not with laminar reconnection.

Funder

European Space Agency’s Networking/Partnering Initiative (NPI) Program

Pasaporte a la Ciencia, Foco Sociedad - reto 3

STFC Ernest Rutherford Fellowship

STFC Consolidated Grant

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3