Direct In‐Situ Estimates of Energy and Force Balance Associated With Magnetopause Reconnection

Author:

Dahani Souhail1ORCID,Lavraud Benoit12ORCID,Génot Vincent1,Toledo‐Redondo Sergio3ORCID,Kieokaew Rungployphan1ORCID,Fargette Naïs4,Roberts Owen W.5ORCID,Gershman Daniel6ORCID,Saito Yoshifumi7ORCID,Giles Barbara6ORCID,Torbert Roy8ORCID,Burch James9ORCID

Affiliation:

1. Institut de Recherche en Astrophysique et Planétologie CNRS UPS CNES Université de Toulouse Toulouse France

2. Laboratoire d’Astrophysique de Bordeaux CNRS Univ. Bordeaux Pessac France

3. Department of Electromagnetism and Electronics University of Murcia Murcia Spain

4. The Blackett Laboratory Imperial College London London UK

5. Department of Physics Aberystwyth University Aberystwyth UK

6. NASA Goddard Space Flight Center Greenbelt MD USA

7. Institute of Space and Astronautical Science JAXA Sagamihara Japan

8. Space Science Center University of New Hampshire Durham NH USA

9. Southwest Research Institute San Antonio TX USA

Abstract

AbstractFundamental processes in plasmas act to convert energies into different forms, for example, electromagnetic, kinetic and thermal. Direct derivation from the Vlasov‐Maxwell equation yields sets of equations that describe the temporal evolution of magnetic, kinetic and internal energies in either the monofluid or multifluid frameworks. In this work, we focus on the main terms affecting the changes in kinetic energy. These are pressure‐gradient‐related terms and electromagnetic terms. The former account for plasma acceleration/deceleration from a pressure gradient, while the latter from an electric field. Although limited spatial and temporal deviations are expected, a statistical balance between these terms is fundamental to ensure the overall conservation of energy and momentum. We use in‐situ observations from the Magnetospheric MultiScale (MMS) mission to study the relationship between these terms. We perform a statistical analysis of those parameters in the context of magnetic reconnection by focusing on small‐scale Electron Diffusion Regions and large‐scale Flux Transfer Events. The analysis reveals a correlation between the two terms in the monofluid force balance, and in the ion force and energy balance. However, the expected relationship cannot be verified from electron measurements. Generally, the pressure‐gradient‐related terms are smaller than their electromagnetic counterparts. We perform an error analysis to quantify the expected underestimation of gradient values as a function of the spacecraft separation compared to the gradient scale. Our findings highlight that MMS is capable of capturing energy and force balance for the ion fluid, but that care should be taken for energy conversion terms based on electron pressure gradients.

Funder

Centre National de la Recherche Scientifique

Ministerio de Ciencia, Innovación y Universidades

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3