The Physics of the MHD Disk–Jet Transition in Binary Systems: Jetted Spiral Walls Launched from Disk Spiral Arms

Author:

Sheikhnezami SomayehORCID,Fendt ChristianORCID

Abstract

Abstract We present a detailed physical analysis of the jet-launching mechanism of a circumstellar disk that is located in a binary system. Applying 3D resistive magnetohydrodynamics simulations, we investigate the local and global properties of the system, such as angular momentum transport and accretion and ejection mass fluxes. In comparison to previous works, for the first time we have considered the full magnetic torque, the presence of an outflow and thus the angular momentum transport by vertical motion, and the binary torque. We discuss its specific 3D structure and how it is affected by tidal effects. We find that the spiral structure evolving in the disk is launched into the outflow. We propose calling this newly discovered structure a jet spiral wall. These spiral features follow the same time evolution, with the jet spiral somewhat lagging the disk spiral. We find that the vertical transport of angular momentum has a significant role in the total angular momentum budget also in a binary system. The same holds for the magnetic torque; however, the contribution from the ϕderivative of the magnetic pressure and B ϕ B r stresses are small. The gravity torque arising from the time-dependent 3D Roche potential becomes essential, as it constitutes the fundamental cause for all 3D effects appearing in our disk–jet system. Quantitatively, we find that the disk accretion rate in a binary system increases by 20% compared to a disk around a single star. The disk wind mass flux increases by even 50%.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3