Curved Jet Motion. I. Orbiting and Precessing Jets

Author:

Fendt ChristianORCID,Yardimci MelisORCID

Abstract

Abstract Astrophysical jets are often observed as bent or curved structures. We also know that the different jet sources may be binary in nature, which may lead to a regular, periodic motion of the jet nozzle, an orbital motion, or precession. Here we present the results of 2D (M)HD simulations in order to investigate how a precessing or orbiting jet nozzle affects the propagation of a high-speed jet. We have performed a parameter study of systems with different precession angles, different orbital periods or separations, and different magnetic field strengths. We find that these kinds of nozzles lead to curved jet propagation, which is determined by the main parameters that define the jet nozzle. We find C-shaped jets from orbiting nozzles and S-shaped jets from precessing nozzles. Over a long time and long distances, the initially curved jet motion bores a broad channel into the ambient gas that is filled with high-speed jet material whose lateral motion is damped, however. A strong (longitudinal) magnetic field can damp the jet curvature that is enforced by either precession or orbital motion of the jet sources. We have investigated the force balance across the jet and ambient medium and found that the lateral magnetic pressure and gas pressure gradients are almost balanced, but that a lack of gas pressure on the concave side of the curvature is leading to the lateral motion. Magnetic tension does not play a significant role. Our results are obtained in code units, but we provide scaling relations such that our results may be applied to young stars, microquasars, symbiotic stars, or active galactic nuclei.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3