Multiple Stellar Populations in Asymptotic Giant Branch Stars of Galactic Globular Clusters

Author:

Lagioia E. P.ORCID,Milone A. P.ORCID,Marino A. F.ORCID,Tailo M.ORCID,Renzini A.ORCID,Carlos M.ORCID,Cordoni G.ORCID,Dondoglio E.ORCID,Jang S.ORCID,Karakas A.ORCID,Dotter A.ORCID

Abstract

Abstract Multiple stellar populations (MPs) are a distinct characteristic of globular clusters (GCs). Their general properties have been widely studied among main-sequence, red giant branch (RGB), and horizontal branch (HB) stars, but a common framework is still missing at later evolutionary stages. We studied the MP phenomenon along the asymptotic giant branch (AGB) sequences in 58 GCs, observed with the Hubble Space Telescope in UV and optical filters. Using UV–optical color–magnitude diagrams, we selected the AGB members of each cluster and identified the AGB candidates of the metal-enhanced population in type II GCs. We studied the photometric properties of the AGB stars and compared them to theoretical models derived from synthetic spectral analysis. We observed the following features: (i) the spread of AGB stars in photometric indices sensitive to variations of light elements and helium is typically larger than that expected from photometric errors; (ii) the fraction of metal-enhanced stars in the AGB is lower than that in the RGB in most of the type II GCs; (iii) the fraction of 1G stars derived from the chromosome map of AGB stars in 15 GCs is larger than that of RGB stars; and (v) the AGB/HB frequency correlates with the average mass of the most helium-enriched population. These findings represent clear evidence of the presence of MPs along the AGB of Galactic GCs and indicate that a significant fraction of helium-enriched stars, which have lower mass in the HB, do not evolve to the AGB phase, leaving the HB sequence toward higher effective temperatures, as predicted by the AGB manqué scenario.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3