Probing the Stellar Populations and Star Formation History of Early-type Galaxies at 0 < z < 1.1 in the Rest-frame Ultraviolet

Author:

Ali Sadman S.ORCID,De Propris RobertoORCID,Chung ChulORCID,Phillipps Steven,Bremer Malcolm N.,Onodera MasatoORCID,Sawicki MarcinORCID,Desprez GuillaumeORCID,Gwyn StephenORCID

Abstract

Abstract We measure the evolution of the rest-frame near-ultraviolet (NUV)−V colors for early-type galaxies in clusters at 0 < z < 1.1 using data from the Hyper Suprime-Cam Subaru Strategic Program, CFHT Large Area U-band Deep Survey, and local Sloan Digital Sky Survey clusters observed with Galaxy Evolution Explorer. Our results show that there is an excess in the ultraviolet spectrum in most quiescent galaxies (compared to the expectations from models fitting their optical/infrared colors and spectra) below z ∼ 0.6, beyond which the excess UV emission fades rapidly. This evolution of the UV color is only consistent with the presence of a highly evolved, hot horizontal branch subpopulation in these galaxies (among the majority of cool and optically bright stars), comprising on average 10% of the total stellar mass and forming at z > 3. The blue UV colors of early-type galaxies at low–intermediate redshifts are likely driven by this subpopulation being enriched in helium up to ∼44%. At z > 0.8 (when the extra UV component has not yet appeared) the data allow us to constrain the star formation histories of galaxies by fitting models to the evolution of their UV colors: we find that the epoch at which the stellar populations formed lies in the range 3 < z form < 10 (corresponding to 0.5–2.2 Gyr after the Big Bang) with a star formation e-folding timescale of τ = 0.35–0.7 Gyr, suggesting that these galaxies formed the majority of stars at very high redshift, with a brief yet intense burst of star formation activity. The star formation history and chemical evolution of early-type galaxies resemble those of globular clusters, albeit on much larger scales.

Funder

MEXT ∣ Japan Society for the Promotion of Science

National Research Foundation of Korea

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3