The Intensity and Evolution of the Extreme Solar and Geomagnetic Storms in 1938 January

Author:

Hayakawa HisashiORCID,Hattori KentaroORCID,Pevtsov Alexei A.ORCID,Ebihara YusukeORCID,Shea Margaret A.,McCracken Ken G.ORCID,Daglis Ioannis A.ORCID,Bhaskar Ankush T.ORCID,Ribeiro PauloORCID,Knipp Delores J.ORCID

Abstract

Abstract Major solar eruptions occasionally direct interplanetary coronal mass ejections (ICMEs) to Earth and cause significant geomagnetic storms and low-latitude aurorae. While individual extreme storms are significant threats to modern civilization, storms occasionally appear in sequence, acting synergistically, and cause “perfect storms” on Earth. The stormy interval in 1938 January was one of such cases. Here, we analyze the contemporary records to reveal its time series on their source active regions, solar eruptions, ICMEs, geomagnetic storms, low-latitude aurorae, and cosmic-ray (CR) variations. Geomagnetic records show that three storms occurred successively on January 17/18 (Dcx ≈ −171 nT), January 21/22 (Dcx ≈ −328 nT), and January 25/26 (Dcx ≈ −336 nT). The amplitudes of the CR variations and storm sudden commencements (SSCs) show the impact of the first ICME as the largest (≈6% decrease in CR and 72 nT in SSC) and the ICMEs associated with the storms that followed as more moderate (≈3% decrease in CR and 63 nT in SSC; ≈2% decrease in CR and 63 nT in SSC). Interestingly, a significant solar proton event occurred on January 16/17 and the Cheltenham ionization chamber showed a possible ground-level enhancement. During the first storm, aurorae were less visible at midlatitudes, whereas, during the second and third storms, the equatorward boundaries of the auroral oval were extended down to 40.3° and 40.0° in invariant latitude. This contrast shows that the initial ICME was probably faster, with a higher total magnitude but a smaller southward component.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3