Revision of the strongest solar energetic particle event of 23 February 1956 (GLE #5) based on the rediscovered original records

Author:

Hayakawa HisashiORCID,Koldobskiy SergeyORCID,Mishev AlexanderORCID,Poluianov StepanORCID,Gil AgnieszkaORCID,Usoskina Inna,Usoskin IlyaORCID

Abstract

Aims. Intense solar eruptions can produce solar energetic particles (SEPs), potentially detectable by ground-based instruments such as neutron monitors (NMs). These events are called ground-level enhancements (GLEs). The strongest GLE with the hardest known SEP spectrum occurred on 23 February 1956 (conventionally numbered GLE #5), providing a benchmark reference for related studies. However, the existing datasets for GLE #5 were compiled from different sources, often secondary; these datasets exhibited significant discrepancies and internal inconsistencies leading to large uncertainties or biases. Here we resolve the inconsistencies and revisit the reconstructions of the energy spectra and angular characteristics of the SEPs for that event, based on our reanalyses on (somehow forgotten) original contemporary records. Methods. We collected, digitised, and verified the source records for NM measurements during GLE #5 based on contemporaneous publications and unpublished materials in the University of Chicago Archives. Using the revised datasets and full modelling, we critically revised the reconstruction of the energy spectra and angular characteristics of the SEPs and the event-integrated omnidirectional SEP flux (fluence) for GLE #5. Results. The energy spectrum of the SEPs during the initial and main phases of GLE #5 was revised based on the new dataset, resulting in a slightly softer, but still agreeing within the uncertainties of the recent studies, SEP spectral estimate. The SEP flux was found to be highly anisotropic in the early phase of the event. This provides a revised reference basis for further analyses and modelling of strong and extreme SEP events and their terrestrial impacts.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3