The Origin of Elements from Carbon to Uranium

Author:

Kobayashi ChiakiORCID,Karakas Amanda I.ORCID,Lugaro MariaORCID

Abstract

Abstract To reach a deeper understanding of the origin of elements in the periodic table, we construct Galactic chemical evolution (GCE) models for all stable elements from C (A = 12) to U (A = 238) from first principles, i.e., using theoretical nucleosynthesis yields and event rates of all chemical enrichment sources. This enables us to predict the origin of elements as a function of time and environment. In the solar neighborhood, we find that stars with initial masses of M > 30M can become failed supernovae if there is a significant contribution from hypernovae (HNe) at M ∼ 20–50M . The contribution to GCE from super-asymptotic giant branch (AGB) stars (with M ∼ 8–10M at solar metallicity) is negligible, unless hybrid white dwarfs from low-mass super-AGB stars explode as so-called Type Iax supernovae, or high-mass super-AGB stars explode as electron-capture supernovae (ECSNe). Among neutron-capture elements, the observed abundances of the second (Ba) and third (Pb) peak elements are well reproduced with our updated yields of the slow neutron-capture process (s-process) from AGB stars. The first peak elements (Sr, Y, Zr) are sufficiently produced by ECSNe together with AGB stars. Neutron star mergers can produce rapid neutron-capture process (r-process) elements up to Th and U, but the timescales are too long to explain observations at low metallicities. The observed evolutionary trends, such as for Eu, can well be explained if ∼3% of 25–50M HNe are magneto-rotational supernovae producing r-process elements. Along with the solar neighborhood, we also predict the evolutionary trends in the halo, bulge, and thick disk for future comparison with Galactic archeology surveys.

Funder

STFC

Australian Research Council

Hungarian Academy of Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 417 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galactic Archaeology with Gaia;New Astronomy Reviews;2024-12

2. Three-Dimensional Nonlocal Thermodynamic Equilibrium Abundance Analyses of Late-Type Stars;Annual Review of Astronomy and Astrophysics;2024-09-13

3. Isotopic abundance of carbon in the DLA towards QSO B1331+170;Monthly Notices of the Royal Astronomical Society;2024-09-10

4. JADES: Carbon enrichment 350 Myr after the Big Bang;Astronomy & Astrophysics;2024-09

5. Nova contributions to the chemical evolution of the Milky Way;Astronomy & Astrophysics;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3