First Images of Phosphorus Molecules toward a Protosolar Analog

Author:

Bergner Jennifer B.ORCID,Burkhardt Andrew M.ORCID,Öberg Karin I.ORCID,Rice Thomas S.ORCID,Bergin Edwin A.ORCID

Abstract

Abstract The chemistry of phosphorus in star- and planet-forming regions is poorly understood, despite the central role of phosphorus in terrestrial biochemistry. We present Atacama Large Millimeter/submillimeter Array band 3 and 4 observations of PO and PN toward the Class I protostar B1-a, representing the first spatially resolved observations of phosphorus carriers toward a solar-type star-forming region. The phosphorus molecules emit from two distinct clumps, which coincide with regions where the protostellar outflow (traced by SiO) interacts with a filament of dense gas (traced by CCS). Thus, the gas-phase phosphorus seems to originate from the shocking of dense interstellar clumps. Based on the observed emission patterns, PO and PN appear to be daughter products of a solid phosphorus carrier with an intermediate volatility between ices and silicate grains. Interstellar shocks may therefore play an important role in converting semi-refractory phosphorus to a more volatile form prior to incorporation into cometary ices. Indeed, the (PO+PN)/CH3OH ratio is similar in B1-a and comet 67P, implying a comparable reservoir of volatile phosphorus. The PO/PN ratio ranges from ∼1–8 across B1-a. The northern emission clump exhibits a lower PO/PN ratio and weaker 13CH3OH emission than southern clump, indicating distinct shock physics and chemistry at the two positions. Resolved observations of P carriers toward additional sources are needed to better understand what regulates such variations in the PO/PN ratio in protostellar environments.

Funder

National Aeronautics and Space Administration

Simons Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3