A Theoretical Approach to the Complex Chemical Evolution of Phosphorus in the Interstellar Medium

Author:

Fernández-Ruz Marina,Jiménez-Serra IzaskunORCID,Aguirre JacoboORCID

Abstract

Abstract The study of phosphorus chemistry in the interstellar medium has become a topic of growing interest in astrobiology because it is plausible that a wide range of P-bearing molecules were introduced in the early Earth by the impact of asteroids and comets on its surface, enriching prebiotic chemistry. Thanks to extensive searches in recent years, it has become clear that P mainly appears in the form of PO and PN in molecular clouds and star-forming regions. Interestingly, PO is systematically more abundant than PN by factors typically of ∼1.4–3, independently of the physical properties of the observed source. In order to unveil the formation routes of PO and PN, in this work we introduce a mathematical model for the time evolution of the chemistry of P in an interstellar molecular cloud and analyze its associated chemical network as a complex dynamical system. By making reasonable assumptions, we reduce the network to obtain explicit mathematical expressions that describe the abundance evolution of P-bearing species and study the dependences of the abundance of PO and PN on the system’s kinetic parameters with much faster computation times than available numerical methods. As a result, our model reveals that the formation of PO and PN is governed by just a few critical reactions, and fully explains the relationship between PO and PN abundances throughout the evolution of molecular clouds. Finally, the application of Bayesian methods constrains the real values of the most influential reaction rate coefficients making use of available observational data.

Funder

Ministerio de Ciencia e Innovación

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3