The Effect of the Approach to Gas Disk Gravitational Instability on the Rapid Formation of Gas Giant Planets. II. Quadrupled Spatial Resolution

Author:

Boss Alan P.ORCID

Abstract

Abstract Observations support the hypothesis that gas disk gravitational instability might explain the formation of massive or wide-orbit gas giant exoplanets. The situation with regard to Jupiter-mass exoplanets orbiting within ∼20 au is more uncertain. Theoretical models yield divergent assessments often attributed to the numerical handling of the gas thermodynamics. Boss used the β cooling approximation to calculate three-dimensional hydrodynamical models of the evolution of disks with initial masses of 0.091 M extending from 4 to 20 au around 1 M protostars. The models considered a wide range (1–100) of β cooling parameters and started from an initial minimum Toomre stability parameter of Q i = 2.7 (gravitationally stable). The disks cooled down from initial outer disk temperatures of 180 K to as low as 40 K as a result of the β cooling, leading to fragmentation into dense clumps, which were then replaced by virtual protoplanets (VPs) and evolved for up to ∼500 yr. The present models test the viability of replacing dense clumps with VPs by quadrupling the spatial resolution of the grid once dense clumps form, sidestepping in most cases VP insertion. After at least ∼200 yr of evolution, the new results compare favorably with those of Boss: similar numbers of VPs and dense clumps form by the same time for the two approaches. The results imply that VP insertion can greatly speed disk instability calculations without sacrificing accuracy.

Funder

Carnegie Institution EPL

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3