Estimating Ion Temperatures at the Polar Coronal Hole Boundary

Author:

Zhu 朱 Yingjie 英杰ORCID,Szente JuditORCID,Landi EnricoORCID

Abstract

Abstract The temperatures of the heavy ions (T i ) in the solar corona provide critical information about the heating mechanism of the million-degree corona. However, the measurement of T i is usually challenging due to the nonthermal motion, instrumental limitations, and optically thin nature of the coronal emissions. We present the measurement of T i and its dependency on the ion charge-to-mass ratio (Z/A) at the polar coronal hole boundary, only assuming that heavy ions have the same nonthermal velocity. To improve the Z/A coverage and study the influence of the instrumental broadening, we used a coordinated observation from the EUV Imaging Spectrometer on board the Hinode satellite and the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on board the Solar and Heliospheric Observatory. We found that the T i of ions with Z/A less than 0.20 or greater than 0.33 are much higher than the local electron temperature. We ran the Alfvén Wave Solar Model-realtime to investigate the formation of optically thin emissions along the line of sight (LOS). The simulation suggested that plasma bulk motions along the LOS broaden the widths of hot emission lines in the coronal hole (e.g., Fe xii, Fe xiii). We discussed other factors that might affect the T i measurement, including the non-Gaussian wings in some bright SUMER lines, which can be fitted by a double-Gaussian or a κ distribution. Our study confirms the preferential heating of heavy ions in coronal holes and provides new constraints on coronal heating models.

Funder

National Solar Observatory

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3