Abstract
Abstract
Extended red emission (ERE) is a broad feature in the spectral region of 500–900 nm commonly observed in a wide range of circumstellar and interstellar environments. Although the observational constraints for ERE are well established, definitive identifications of the carriers and associated processes complying with these constraints remain unanswered. We report a plausible two-step model involving far-ultraviolet (UV)-irradiated single-layer graphene (SLG), considered as large polycyclic aromatic hydrocarbons, to meet these constraints and supported by laboratory experiments. The far-UV-treated SLG, producing structural defects and graphene quantum dots, showed photoluminescence excitation spectrum extending from the far-UV to UV–visible region, hence meeting the requirements of far-UV light and high photon conversion efficiency. Furthermore, a photoluminescence band shifted from ∼585 to ∼750 nm for high-dose-exposed SLG agrees with the observed redshift of the ERE band in regions under a greater far-UV radiation density.
Funder
Ministry of Science and Technology, Taiwan
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献