Stellar Obliquity from Spot Transit Mapping of Kepler-210

Author:

Valio AdrianaORCID,Araújo AlexandreORCID

Abstract

Abstract Stellar obliquity, the angle between the stellar spin and the perpendicular to the planetary orbit, also known as the spin–orbit angle, holds clues to the formation and evolution of planetary systems. When a planet transits a star periodically, it may cross in front of a stellar spot, producing a noticeable signal on the transit light curve. Spot transit mapping can be used to measure stellar obliquity. Here we present the analysis of Kepler-210, a K-dwarf star with two mini-Neptune-size planets in orbit. Interestingly, the spot mapping from the outer planet, Kepler-210 c, resulted in a spot distribution with no spots detected at longitudes >38°, whereas the spots occulted by Kepler-210 b displayed all range of longitudes. The best explanation for this was that Kepler-210 c exhibited an inclined orbit, while the orbit of Kepler-210 b was parallel to the stellar equator. Thus, transits of Kepler-210 c occulted different latitude bands of the star. The observed maximum spot topocentric longitude of 38° implied an orbital obliquity of 18°–45° for Kepler-210 c. Further considering a symmetric spot distribution in latitude with respect to the stellar equator, the obliquity was restricted to 34.°8, implying a maximum spot latitude of 40°. The differential rotation profile calculated from the oblique orbit for Kepler-210 c agreed with that obtained from the spots occulted by Kepler-210 b. Combining results from both planets yields a rotational shear of ΔΩ = 0.0353 ± 0.0002 rad day−1 and a relative rotational shear of 6.9%. The causes of the Kepler-210 c misalignment remain to be explained.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3