Dependence of Stellar Differential Rotation on Effective Temperature and Rotation: An Analysis from Starspot Transit Mapping

Author:

Araújo AlexandreORCID,Valio AdrianaORCID

Abstract

Abstract Stellar rotation is crucial for studying stellar evolution, since it provides information about age, angular momentum transfer, and magnetic fields of stars. In the case of the Sun, due to its proximity, detailed observation of sunspots at various latitudes and longitudes allows a precise estimation of the solar rotation period and its differential rotation. Here, we present for the first time an analysis of stellar differential rotation using starspot transit mapping as a means of detecting differential shear in solar-type and M stars. The aim of this study is to investigate the relationship between rotational shear, ΔΩ, and both the star's effective temperature (T eff) and its average rotation period ( P ¯ ). We present differential rotation profiles derived from previously collected spot transit mapping data for 13 slowly rotating stars (P rot ≥ 4.5 days), with spectral types ranging from M to F, which were observed by the Kepler and CoRoT satellites. Our findings reveal a significant negative correlation between rotational shear and the mean period of stellar rotation (correlation coefficient of −0.77), which may be an indicator of stellar age. On the other hand, a weak correlation was observed between differential rotation and the effective temperature of the stars. Overall, the study provides valuable insights into the complex relationship between stellar parameters and differential rotation, which may enhance our understanding of stellar evolution and magnetic dynamos.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3