Abstract
Abstract
The Radio Arc is a system of organized nonthermal filaments (NTFs) located within the Galactic center (GC) region of the Milky Way. Recent observations of the Radio Arc NTFs revealed a magnetic field that alternates between being parallel and rotated with respect to the orientation of the filaments. This pattern is in stark contrast to the predominantly parallel magnetic field orientations observed in other GC NTFs. To help elucidate the origin of this pattern, we analyze spectro-polarimetric data of the Radio Arc NTFs using an Australian Telescope Compact Array data set covering the continuous frequency range from ∼4 to 11 GHz at a spectral resolution of 2 MHz. We fit depolarization models to the spectral polarization data to characterize Faraday effects along the line of sight. We assess whether structures local to the Radio Arc NTFs may contribute to the unusual magnetic field orientation. External Faraday effects are identified as the most likely origin of the rotation observed for the Radio Arc NTFs; however, internal Faraday effects are also found to be likely in regions of parallel magnetic field. The increased likelihood of internal Faraday effects in parallel magnetic field regions may be attributed to the effects of structures local to the GC. One such structure could be the Radio Shell local to the Radio Arc NTFs. Future studies are needed to determine whether this alternating magnetic field pattern is present in other multi-stranded NTFs, or is a unique property resulting from the complex interstellar region local to the Radio Arc NTFs.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献