A Very Large Array Study of Newly Discovered Southern Latitude Nonthermal Filaments in the Galactic Center: Radio Continuum Total-intensity and Spectral Index Properties

Author:

Paré Dylan M.ORCID,Lang Cornelia C.,Morris Mark R.ORCID

Abstract

Abstract The nonthermal filament (NTF) radio structures clustered within a few hundred parsecs of the Galactic center (GC) are apparently unique to this region of the Galaxy. Recent radio images of the GC using MeerKAT at 1 GHz have revealed a multitude of faint, previously unknown NTF bundles (NTFBs), some of which are comprised of as many as 10 or more individual filaments. In this work we present Very Large Array observations at the C- and X-bands (4–12 GHz) at arcsecond-scale resolutions of three of these newly discovered NTFBs, all located at southern Galactic latitudes. These observations allow us to compare their total-intensity properties with those of the larger NTF population. We find that these targets generally possess properties similar to what is observed in the larger NTF population. However, the larger NTF population generally has steeper spectral indices than what we observe for our chosen targets. The results presented here based on the total-intensity properties of these structures indicate that the NTFs are likely a result of synchrotron emission from relativistic electrons that have been generated either by a nearby compact source or by extended magnetic field structures in which the magnetic field line reconnection has accelerated the electrons. In either scenario, once the relativistic electrons are produced and injected locally into the field they diffuse along the magnetic field lines, producing the filaments.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3