Resonant Excitation of Planetary Eccentricity due to a Dispersing Eccentric Protoplanetary Disk: A New Mechanism of Generating Large Planetary Eccentricities

Author:

Li JiaruORCID,Lai DongORCID

Abstract

Abstract We present a new mechanism of generating large planetary eccentricities. This mechanism applies to planets within the inner cavities of their companion protoplanetary disks. A massive disk with an inner truncation may become eccentric due to nonadiabatic effects associated with gas cooling and can retain its eccentricity in long-lived coherently precessing eccentric modes; as the disk disperses, the inner planet will encounter a secular resonance with the eccentric disk when the planet and the disk have the same apsidal precession rates; the eccentricity of the planet is then excited to a large value as the system goes through the resonance. In this work, we solve the eccentric modes of a model disk for a wide range of masses. We then adopt an approximate secular dynamics model to calculate the long-term evolution of the “planet + dispersing disk” system. The planet attains a large eccentricity (between 0.1 and 0.6) in our calculations even though the disk eccentricity is quite small (≲0.05). This eccentricity excitation can be understood in terms of the mode conversion (“avoided crossing” between two eigenstates) phenomenon associated with the evolution of the “planet + disk” eccentricity eigenstates.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3