What You Don’t Know Can Hurt You: Use and Abuse of Astrophysical Models in Gravitational-wave Population Analyses

Author:

Cheng April QiuORCID,Zevin MichaelORCID,Vitale SalvatoreORCID

Abstract

Abstract One of the goals of gravitational-wave astrophysics is to infer the number and properties of the formation channels of binary black holes (BBHs); to do so, one must be able to connect various models with the data. We explore benefits and potential issues with analyses using models informed by population synthesis. We consider five possible formation channels of BBHs, as in Zevin et al. (2021b). First, we confirm with the GWTC-3 catalog what Zevin et al. (2021b) found in the GWTC-2 catalog, i.e., that the data are not consistent with the totality of observed BBHs forming in any single channel. Next, using simulated detections, we show that the uncertainties in the estimation of the branching ratios can shrink by up to a factor of ∼1.7 as the catalog size increases from 50 to 250, within the expected number of BBH detections in LIGO–Virgo–KAGRA's fourth observing run. Finally, we show that this type of analysis is prone to significant biases. By simulating universes where all sources originate from a single channel, we show that the influence of the Bayesian prior can make it challenging to conclude that one channel produces all signals. Furthermore, by simulating universes where all five channels contribute but only a subset of channels are used in the analysis, we show that biases in the branching ratios can be as large as ∼50% with 250 detections. This suggests that caution should be used when interpreting the results of analyses based on strongly modeled astrophysical subpopulations.

Funder

Space Telescope Science Institute

NSF ∣ Directorate for Mathematical and Physical Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3