Hydrodynamic Model of Hα Emission from Accretion Shocks of a Proto-giant Planet and Circumplanetary Disk

Author:

Takasao ShinsukeORCID,Aoyama YuhikoORCID,Ikoma MasahiroORCID

Abstract

Abstract Recent observations have detected excess Hα emission from young stellar systems with an age of several Myr such as PDS 70. One-dimensional radiation-hydrodynamic models of shock-heated flows that we developed previously demonstrate that planetary accretion flows of >a few ten km s−1 can produce Hα emission. It is, however, a challenge to understand the accretion process of proto-giant planets from observations of such shock-originated emission because of a huge gap in scale between the circumplanetary disk (CPD) and the microscopic accretion shock. To overcome the scale gap problem, we combine two-dimensional, high-spatial-resolution global hydrodynamic simulations and the one-dimensional local radiation-hydrodynamic model of the shock-heated flow. From such combined simulations for the protoplanet–CPD system, we find that the Hα emission is mainly produced in localized areas on the protoplanetary surface. The accretion shocks above the CPD produce much weaker Hα emission (approximately one to two orders of magnitude smaller in luminosity). Nevertheless, the accretion shocks above the CPD significantly affect the accretion process onto the protoplanet. The accretion occurs at a quasi-steady rate if averaged on a 10 day timescale, but its rate shows variability on shorter timescales. The disk surface accretion layers including the CPD shocks largely fluctuate, which results in the time-variable accretion rate and Hα luminosity of the protoplanet. We also model the spectral emission profile of the Hα line and find that the line profile is less time-variable despite the large variability in luminosity. High-spectral-resolution spectroscopic observation and monitoring will be key to revealing the property of the accretion process.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3