Polarized Maser Emission with In-source Faraday Rotation

Author:

Tobin T. L.ORCID,Gray M. D.ORCID,Kemball A. J.ORCID

Abstract

Abstract We discuss studies of polarization in astrophysical masers with particular emphasis on the case where the Zeeman splitting is small compared to the Doppler profile, resulting in a blend of the transitions between magnetic substates. A semiclassical theory of the molecular response is derived, and coupled to radiative transfer solutions for 1 and 2-beam linear masers, resulting in a set of nonlinear, algebraic equations for elements of the molecular density matrix. The new code, PRISM, implements numerical methods to compute these solutions. Using PRISM, we demonstrate a smooth transfer between this case and that of wider splitting. For a J = 1–0 system, with parameters based on the v = 1, J = 1–0 transition of SiO, we investigate the behavior of linear and circular polarization as a function of the angle between the propagation axis and the magnetic field, and with the optical depth, or saturation state, of the model. We demonstrate how solutions are modified by the presence of Faraday rotation, generated by various abundances of free electrons, and that strong Faraday rotation leads to additional angles where the Stokes Q changes sign. We compare our results to a number of previous models, from the analytical limits derived by Goldreich, Keeley, and Kwan in 1973, through computational results by W. Watson and coauthors, to the recent work by Lankhaar and Vlemmings in 2019. We find that our results are generally consistent with those of other authors given the differences in the approach and the approximations made.

Funder

National Science Foundation

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maser polarization through anisotropic pumping;Astronomy & Astrophysics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3