Maser polarization through anisotropic pumping

Author:

Lankhaar Boy,Surcis Gabriele,Vlemmings WouterORCID,Impellizzeri Violette

Abstract

Context. Polarized emission from masers is an excellent tool to study magnetic fields in maser sources. The linear polarization of the majority of masers is understood as an interplay of maser saturation and anisotropic pumping. However, for the latter mechanism, no quantitative modeling has been presented yet. Aims. We aim to construct a comprehensive model of maser polarization, including quantitative modeling of both anisotropic pumping and the effects of maser saturation on the polarization of masers. Methods. We extended regular (isotropic) maser excitation modeling with a dimension that describes the molecular population alignments, as well as including the linear polarization dimension to the radiative transfer. The results of the excitation analysis yielded the anisotropic pumping and decay parameters, which were subsequently used in one-dimensional proper maser polarization radiative transfer modeling. Results. We present the anisotropic pumping parameters for a variety of transitions from class I CH3OH masers, H2O masers, and SiO masers. SiO masers are highly anisotropically pumped due to them occurring in the vicinity of a late-type star, which irradiates the maser region with a strong directional radiation field. Class I CH3OH masers and H2O masers occur in association with shocks, and they are modestly anisotropically pumped due to the anisotropy of the excitation region. Conclusions. Our modeling constitutes the first quantitative constraints on the anisotropic pumping of masers. We find that anisotropic pumping can explain the high polarization yields of SiO masers, as well as the modest polarization of unsaturated class I CH3OH masers. The common 22 GHz H2O maser has a relatively weak anisotropic pumping; in contrast, we predict that the 183 GHz H2O maser is strongly anisotropically pumped. Finally, we outline a mechanism through which non-Zeeman circular polarization is produced, when the magnetic field changes direction along the propagation through an anisotropically pumped maser.

Funder

Vetenskapsrådet

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3