Measuring the Nonaxially Symmetric Surface Temperature Distribution of the Central Compact Object in Puppis A

Author:

Alford J. A. J.ORCID,Gotthelf E. V.ORCID,Perna R.ORCID,Halpern J. P.ORCID

Abstract

Abstract The surface temperature distributions of central compact objects (CCOs) are powerful probes of their crustal magnetic field strengths and geometries. Here we model the surface temperature distribution of RX J0822−4300, the CCO in the Puppis A supernova remnant, using 471 ks of XMM-Newton data. We compute the energy-dependent pulse profiles in 16 energy bands, fully including the general relativistic effects of gravitational redshift and light bending, to accurately model the two heated surface regions of different temperatures and areas, in addition to constraining the viewing geometry. This results in precise measurements of the two temperatures: kT warm = ( 1 + z ) × 0.222 0.019 + 0.018 keV and kT hot = (1 + z) × 0.411 ± 0.011 keV. The two heated surface regions are likely located very close to the rotational poles, with the most probable position of the hotter component ≈ 6° from the rotational pole. For the first time, we are able to measure a deviation from a pure antipodal hot-spot geometry, with a longitudinal offset δ γ = 11 7 2 5 + 2 6 . The discovery of this asymmetry, along with the factor of ≈2 temperature difference between the two emitting regions, may indicate that RX J0822−4300 was born with a strong, tangled crustal magnetic field.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The high energy X-ray probe (HEX-P): magnetars and other isolated neutron stars;Frontiers in Astronomy and Space Sciences;2024-01-09

2. Do Central Compact Objects have Carbon Atmospheres?;The Astrophysical Journal;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3