Do Central Compact Objects have Carbon Atmospheres?

Author:

Alford J. A. J.ORCID,Halpern J. P.ORCID

Abstract

Abstract Only three of the dozen central compact objects (CCOs) in supernova remnants (SNRs) show thermal X-ray pulsations due to nonuniform surface temperature (hot spots). The absence of X-ray pulsations from several unpulsed CCOs has motivated suggestions that they have uniform-temperature carbon atmospheres (UTCAs), which adequately fit their spectra with appropriate neutron star (NS) surface areas. This is in contrast to the two-temperature blackbody or hydrogen atmospheres that also fit well. Here we investigate the applicability of UTCAs to CCOs. We show the following: (i) The phase-averaged spectra of the three pulsed CCOs can also be fitted with a UTCA of the appropriate NS area, despite pulsed CCOs manifestly having nonuniform surface temperature. A good spectral fit is therefore not strong support for the UTCA model of unpulsed CCOs. (ii) An improved spectrum of one unpulsed CCO, previously analyzed with a UTCA, does not allow an acceptable fit. (iii) For two unpulsed CCOs, the UTCA does not allow a distance compatible with the SNR distance. These results imply that, in general, CCOs must have hot, localized regions on the NS surface. We derive new X-ray pulse modulation upper limits on the unpulsed CCOs, and constrain their hot spot sizes and locations. We develop an alternative model that accounts for both the pulsed and unpulsed CCOs: a range of angles between hot spot and rotation axes consistent with an exponential distribution with scale factor λ ∼ 20°. We discuss the physical mechanisms that could produce such small angles and small hot spots.

Funder

NASA XMM grant

Chandra Award SAO

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3