An Updated Formalism for Line-driven Radiative Acceleration and Implications for Stellar Mass Loss

Author:

Lattimer Aylecia S.ORCID,Cranmer Steven R.ORCID

Abstract

Abstract Radiation contributes to the acceleration of large-scale flows in various astrophysical environments because of strong opacity in the spectral lines. Quantification of the associated force is crucial to understanding these line-driven flows, and a large number of lines (due to the full set of elements and ionization stages) must be taken into account. Here we provide new calculations of the dimensionless line strengths and associated opacity-dependent force multipliers for an updated list of approximately 4.5 million spectral lines compiled from the NIST, CHIANTI, CMFGEN, and TOPbase databases. To maintain generality of application to different environments, we assume local thermodynamic equilibrium, illumination by a Planck function, and the Sobolev approximation. We compute the line forces in a two-dimensional grid of temperatures (i.e., values between 5200 and 70,000 K) and densities (varying over 11 orders of magnitude). Historically, the force multiplier function has been described by a power-law function of optical depth. We revisit this assumption by fitting alternate functions that include saturation to a constant value (Gayley’s Q ¯ parameter) in the optically thin limit. This alternate form is a better fit than the power-law form, and we use it to calculate example mass-loss rates for massive main-sequence stars. Because the power-law force multiplier does not continue to arbitrarily small optical depths, we find a sharp decrease, or quenching, of line-driven winds for stars with effective temperatures less than about 15,000 K.

Funder

University of Colorado - Boulder

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3