Swarm intelligence for full Stokes dynamic imaging reconstruction of interferometric data

Author:

Mus AlejandroORCID,Müller HendrikORCID,Lobanov AndreiORCID

Abstract

Context. In very long baseline interferometry (VLBI), the combination of multiple antennas permits the synthesis of a virtual telescope with a larger diameter and consequently higher resolution than the individual antennas. However, due to the sparse nature of the array, recovering an image from the observed data is a challenging ill-posed inverse problem. Aims. The VLBI community is interested in not only recovering an image in total intensity from interferometric data, but also in obtaining results in the polarimetric and the temporal domain. Only a few algorithms are able to work in all these domains simultaneously. In particular, the algorithms based on optimization that consider various penalty terms specific to static total intensity imaging, time-variability and polarimetry are restricted to grids in the domain of the objective function. In this work we present a novel algorithm, multiobjective particle swarm optimization (MO-PSO), that is able to recover the optimal weights without any space-gridding, and to obtain the marginal contribution of each of the playing terms. Methods. To this end, we utilized multiobjective optimization together with particle swarm metaheuristics. We let the swarm of weights converge to the best position. Results. We evaluate our algorithm with synthetic data sets that are representative for the main science targets and instrumental configuration of the Event Horizon Telescope Collaboration (EHTC) and its planned successors. We successfully recover the polarimetric, static, and time-dynamic signature of the ground truth movie' even with relative sparsity, and a set of realistic data corruptions. Conclusions. We have built a novel, fast, hyperparameter space gridding-free algorithm that successfully recovers static and dynamic polarimetric reconstructions. Compared to regularized maximum likelihood (RML) methods, it avoids the need for parameter surveys, and it is not limited to the number of pixels, unlike recently proposed multiobjective imaging algorithms. Hence, this technique is a novel useful alternative tool to characterize full Stokes time-(in)dependent signatures in a VLBI data set robustly with a minimal set of user-based choices.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3