Sticking of Fine Particles in High-velocity Impact: Application to Size Distribution of Dust Grains in a Debris Disk

Author:

Kadono ToshihikoORCID,Kobayashi Hiroshi,Yokoyama Mitsuru

Abstract

Abstract Impact experiments were conducted at a velocity of ∼0.2–1.0 km s−1 using fine particles with several microns or submicrons in size. For metal (Cu) plate targets, as observed in previous impact experiments using projectiles with sizes larger than tens of micron, our experiments with the fine particles also show that projectile materials can remain in the crater. For brittle (SiO2 glass) plate targets, though previous impact experiments using projectiles with sizes larger than tens of microns have shown the spallation and ejection of projectile materials, our experiments with the fine particles show that irreversible inelastic deformation of targets occurred and that projectile materials can remain in the crater. This is explained by the absorption of impact energy determined via the competition between deformation and crack propagation. The deformation thus contributes to the energy absorption even for brittle materials at small sizes. Compiling our results and previous data, we found that sticking can occur in collisions with particles up to at least 1 cm for ductile (metal) targets and 10 μm for brittle targets at several hundred meters per second. As an application, we evaluated the size distribution of dust grains in a debris disk where the sticking of fine particles is assumed to occur. We demonstrated that the collisional sticking modified the size distribution, resulting in the decrease of spectral energy distribution at millimeter wavelengths, consistent with the photometry data of this debris disk. This suggests that the sticking of fine particles occurs in this debris disk.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3