ELUCID. VII. Using Constrained Hydro Simulations to Explore the Gas Component of the Cosmic Web

Author:

Li Renjie,Wang HuiyuanORCID,Mo H. J.ORCID,Huang Shuiyao,Katz Neal,Luo Xiong,Cui Weiguang,Li Hao,Yang XiaohuORCID,Jiang Ning,Zhang Yuning

Abstract

Abstract Using reconstructed initial conditions in the Sloan Digital Sky Survey (SDSS) survey volume, we carry out constrained hydrodynamic simulations in three regions representing different types of the cosmic web: the Coma cluster of galaxies; the SDSS Great Wall; and a large low-density region at z ∼ 0.05. These simulations, which include star formation and stellar feedback but no active galactic nucleus formation and feedback, are used to investigate the properties and evolution of intergalactic and intracluster media. About half of the warm-hot intergalactic gas is associated with filaments in the local cosmic web. Gas in the outskirts of massive filaments and halos can be heated significantly by accretion shocks generated by mergers of filaments and halos, respectively, and there is a tight correlation between the gas temperature and the strength of the local tidal field. The simulations also predict some discontinuities associated with shock fronts and contact edges, which can be tested using observations of the thermal Sunyaev–Zel’dovich effect and X-rays. A large fraction of the sky is covered by Lyα and O vi absorption systems, and most of the O vi systems and low-column-density H i systems are associated with filaments in the cosmic web. The constrained simulations, which follow the formation and heating history of the observed cosmic web, provide an important avenue to interpret observational data. With full information about the origin and location of the cosmic gas to be observed, such simulations can also be used to develop observational strategies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3