Radio Emission of Nearby Early-type Galaxies in the Low and Very Low Radio Luminosity Range

Author:

Wójtowicz AnnaORCID,Stawarz ŁukaszORCID,Cheung C. C.ORCID,Werner NorbertORCID,Rudka Dominik

Abstract

Abstract We analyze radio continuum emission of early-type galaxies with dynamical measurements of central supermassive black hole (SMBH) masses and well-characterized large-scale environments, but regardless of the exact level of the nuclear activity. The 1.4 GHz radio fluxes collected with ∼arcmin resolution for 62 nearby targets (distances ≲153 Mpc) correspond to low and very low monochromatic luminosities of L r ∼ 1035–1041 erg s−1. We quantify possible correlations between the radio properties with the main parameters of SMBHs, host galaxies, and hot gaseous halos, finding a general bimodality in the radio luminosity distribution, with the borderline between radio-bright and radio-dim populations at log L r / L Edd 8.5 . We analyze the far-infrared data for the targets, finding that all radio-bright and over a half of the radio-dim sources are overluminous in radio wavelengths with respect to the far-infrared–radio correlation. High-resolution radio maps reveal that the overwhelming majority of radio-dim sources is unresolved on the arcsecond scale, while the bulk of radio-bright sources display extended jets and lobes of low- and intermediate-power radio galaxies; these jets dominate the radio emission of radio-bright objects. Regarding the origin of the radio emission of radio-dim sources, we discuss two main possibilities. One possibility is the advection-dominated accretion flow model, in which the radio and nuclear X-ray radiative outputs at very low accretion rates are both dominated by unresolved jets. The other possibility is that the radio-dim sources, unlike the radio-bright ones, are characterized by low values of SMBH spins, so that their radio emission is not related to the jets, but instead is due to a combination of star-forming processes and previous nuclear outbursts.

Funder

Narodowe Centrum Nauki

Grantová Agentura České Republiky

NASA DPR

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3