GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological Parameters

Author:

Ghosh AritraORCID,Urry C. MeganORCID,Rau Amrit,Perreault-Levasseur LaurenceORCID,Cranmer MilesORCID,Schawinski Kevin,Stark Dominic,Tian ChuanORCID,Ofman Ryan,Ananna Tonima TasnimORCID,Auge ConnorORCID,Cappelluti NicoORCID,Sanders David B.ORCID,Treister EzequielORCID

Abstract

Abstract We introduce a novel machine-learning framework for estimating the Bayesian posteriors of morphological parameters for arbitrarily large numbers of galaxies. The Galaxy Morphology Posterior Estimation Network (GaMPEN) estimates values and uncertainties for a galaxy’s bulge-to-total-light ratio (L B /L T ), effective radius (R e ), and flux (F). To estimate posteriors, GaMPEN uses the Monte Carlo Dropout technique and incorporates the full covariance matrix between the output parameters in its loss function. GaMPEN also uses a spatial transformer network (STN) to automatically crop input galaxy frames to an optimal size before determining their morphology. This will allow it to be applied to new data without prior knowledge of galaxy size. Training and testing GaMPEN on galaxies simulated to match z < 0.25 galaxies in Hyper Suprime-Cam Wide g-band images, we demonstrate that GaMPEN achieves typical errors of 0.1 in L B /L T , 0.″17 (∼7%) in R e , and 6.3 × 104 nJy (∼1%) in F. GaMPEN's predicted uncertainties are well calibrated and accurate (<5% deviation)—for regions of the parameter space with high residuals, GaMPEN correctly predicts correspondingly large uncertainties. We also demonstrate that we can apply categorical labels (i.e., classifications such as highly bulge dominated) to predictions in regions with high residuals and verify that those labels are ≳97% accurate. To the best of our knowledge, GaMPEN is the first machine-learning framework for determining joint posterior distributions of multiple morphological parameters and is also the first application of an STN to optical imaging in astronomy.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3