From images to features: unbiased morphology classification via variational auto-encoders and domain adaptation

Author:

Xu Quanfeng123ORCID,Shen Shiyin14ORCID,de Souza Rafael S5ORCID,Chen Mi12,Ye Renhao12,She Yumei3,Chen Zhu6ORCID,Ishida Emille E O7,Krone-Martins Alberto89,Durgesh Rupesh10

Affiliation:

1. Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences , 80 Nandan Road, Shanghai 200030 , China

2. School of Astronomy and Space Sciences, University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049 , China

3. School of Mathematics and Computer Science, Yunnan Minzu University , 2929 Yuehua Street, Kunming 650500 , China

4. Key Lab for Astrophysics , Shanghai 200234 , China

5. Centre for Astrophysics Research, University of Hertfordshire , College Lane, Hatfield AL10 9AB , UK

6. Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234 , 100 Guilin Road, Shanghai 200234 , China

7. LPC, Université Clermont Auvergne, CNRS/IN2P3 , F-63000 Clermont-Ferrand , France

8. Donald Bren School of Information and Computer Sciences, University of California , Irvine, CA 92697 , USA

9. CENTRA/SIM, Faculdade de Ciências, Universidade de Lisboa , Ed. C8, Campo Grande, P-1749-016 Lisboa , Portugal

10. Independent Researcher

Abstract

ABSTRACT We present a novel approach for the dimensionality reduction of galaxy images by leveraging a combination of variational auto-encoders (VAEs) and domain adaptation (DA). We demonstrate the effectiveness of this approach using a sample of low-redshift galaxies with detailed morphological type labels from the Galaxy Zoo Dark Energy Camera Legacy Survey (DECaLS) project. We show that 40-dimensional latent variables can effectively reproduce most morphological features in galaxy images. To further validate the effectiveness of our approach, we utilized a classical random forest classifier on the 40-dimensional latent variables to make detailed morphology feature classifications. This approach performs similar to a direct neural network application on galaxy images. We further enhance our model by tuning the VAE network via DA using galaxies in the overlapping footprint of DECaLS and Beijing-Arizona Sky Survey + Mayall z-band Legacy Survey, enabling the unbiased application of our model to galaxy images in both surveys. We observed that DA led to even better morphological feature extraction and classification performance. Overall, this combination of VAE and DA can be applied to achieve image dimensionality reduction, defect image identification, and morphology classification in large optical surveys.

Funder

China Manned Space

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3