X-Ray Spectroscopic Evidence of Charge Exchange Emission in the Disk of M51

Author:

Zhang ShuinaiORCID,Wang Q. DanielORCID,Sun WeiORCID,Long MinORCID,Sun JiaORCID,Ji LiORCID

Abstract

Abstract In the disks of spiral galaxies, diffuse soft X-ray emission is known to be strongly correlated with star-forming regions. However, this emission is not simply from a thermal-equilibrium plasma and its origin remains greatly unclear. In this work, we present an X-ray spectroscopic analysis of the emission from the northern hot spot; a region with enhanced star formation off the nucleus of M51. Based on the high spectral resolution data from XMM-Newton/Reflection Grating Spectrometer (RGS) observations, we unambiguously detect a high G ratio ( 3.2 1.5 + 6.9 ) of the O vii Heα triplet. This high G ratio is also spatially confirmed by oxygen emission-line maps from the same data. A physical model consisting of a thermal plasma and its charge exchange (CX) with neutral cool gas gives a good explanation for the G ratio and the entire RGS spectra. This model also gives a satisfactory characterization of the complementary Chandra ACIS-S data, which enables a direct imaging of the diffuse emission, tracing the hot plasma across the galaxy. The hot plasma has a similar characteristic temperature of ∼0.34 keV and an approximately solar metallicity. The CX contributes ∼50% to the diffuse emission in the 0.4–1.8 keV band, suggesting an effective hot/cool gas interface area about five times the geometric area of the M51 disk. Therefore, the CX appears to play a major role in the soft X-ray production and may be used as a powerful tool to probe the interface astrophysics, important for studying galactic ecosystems.

Funder

the NSFC grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. T-ReX: The Tarantula—Revealed by X-Rays;The Astrophysical Journal Supplement Series;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3