The Central 1000 au of a Prestellar Core Revealed with ALMA. II. Almost Complete Freeze-out

Author:

Caselli PaolaORCID,Pineda Jaime E.ORCID,Sipilä OlliORCID,Zhao Bo,Redaelli ElenaORCID,Spezzano SilviaORCID,Maureira Maria JoséORCID,Alves FelipeORCID,Bizzocchi LucaORCID,Bourke Tyler L.ORCID,Chacón-Tanarro Ana,Friesen RachelORCID,Galli DanieleORCID,Harju JormaORCID,Jiménez-Serra IzaskunORCID,Keto Eric,Li Zhi-YunORCID,Padovani MarcoORCID,Schmiedeke AnikaORCID,Tafalla MarioORCID,Vastel Charlotte

Abstract

Abstract Prestellar cores represent the initial conditions in the process of star and planet formation. Their low temperatures (<10 K) allow the formation of thick icy dust mantles, which will be partially preserved in future protoplanetary disks, ultimately affecting the chemical composition of planetary systems. Previous observations have shown that carbon- and oxygen-bearing species, in particular CO, are heavily depleted in prestellar cores due to the efficient molecular freeze-out onto the surface of cold dust grains. However, N-bearing species such as NH3 and, in particular, its deuterated isotopologues appear to maintain high abundances where CO molecules are mainly in the solid phase. Thanks to ALMA, we present here the first clear observational evidence of NH2D freeze-out toward the L1544 prestellar core, suggestive of the presence of a “complete depletion zone” within a ≃1800 au radius, in agreement with astrochemical prestellar core model predictions. Our state-of-the-art chemical model coupled with a non-LTE radiative transfer code demonstrates that NH2D becomes mainly incorporated in icy mantles in the central 2000 au and starts freezing out already at ≃7000 au. Radiative transfer effects within the prestellar core cause the NH2D(111 − 101) emission to appear centrally concentrated, with a flattened distribution within the central ≃3000 au, unlike the 1.3 mm dust continuum emission, which shows a clear peak within the central ≃1800 au. This prevented NH2D freeze-out from being detected in previous observations, where the central 1000 au cannot be spatially resolved.

Funder

Max Planck Institute for extraterrestrial Physics

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of complex organic molecules in starless and pre-stellar cores in the Perseus molecular cloud;Monthly Notices of the Royal Astronomical Society;2024-09-03

2. FAUST XIX. D2CO in the outflow cavities of NGC 1333 IRAS 4A: recovering the physical structure of its original prestellar core;Monthly Notices of the Royal Astronomical Society: Letters;2024-08-07

3. FAUST;Astronomy & Astrophysics;2024-08

4. Deep Search for Phosphine in a Prestellar Core;The Astrophysical Journal Letters;2024-06-01

5. Quasi-equilibrium chemical evolution in starless cores;Monthly Notices of the Royal Astronomical Society;2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3