An Improved Calibration of the Wavelength Dependence of Metallicity on the Cepheid Leavitt Law

Author:

Breuval LouiseORCID,Riess Adam G.ORCID,Kervella PierreORCID,Anderson Richard I.ORCID,Romaniello MartinoORCID

Abstract

Abstract The Cepheid period–luminosity (PL) relation (or Leavitt law) has served as the first rung of the most widely used extragalactic distance ladder and is central to the determination of the local value of the Hubble constant (H 0). We investigate the influence of metallicity on Cepheid brightness, a term that significantly improves the overall fit of the distance ladder, to better define its wavelength dependence. To this aim, we compare the PL relations obtained for three Cepheid samples having distinct chemical composition (in the Milky Way and Magellanic Clouds) and focusing on the use of improved and recent data while covering a metallicity range of about 1 dex. We estimate the metallicity effect (hereafter γ) in 15 filters from mid-IR to optical wavelengths, including five Wesenheit indices, and we derive a significant metallicity term in all filters, in agreement with recent empirical studies and models, in the sense of metal-rich Cepheids being brighter than metal-poor ones. We describe the contribution of various systematic effects in the determination of the γ term. We find no evidence of γ changing over the wavelength range 0.5–4.5 μm, indicating that the main influence of metallicity on Cepheids is in their luminosity rather than color. Finally, we identify factors that sharpen the empirical constraints on the metallicity term over past studies, including corrections for the depth of the Magellanic Clouds, better-calibrated Cepheid photometry, improved Milky Way extinction estimates, and revised and expanded metallicity measurements in the LMC.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3