Small Magellanic Cloud Cepheids Observed with the Hubble Space Telescope Provide a New Anchor for the SH0ES Distance Ladder

Author:

Breuval LouiseORCID,Riess Adam G.ORCID,Casertano Stefano,Yuan WenlongORCID,Macri Lucas M.ORCID,Romaniello MartinoORCID,Murakami Yukei S.ORCID,Scolnic DanielORCID,Anand Gagandeep S.ORCID,Soszyński IgorORCID

Abstract

Abstract We present phase-corrected photometric measurements of 88 Cepheid variables in the core of the Small Magellanic Cloud (SMC), the first sample obtained with the Hubble Space Telescope's (HST) Wide Field Camera 3, in the same homogeneous photometric system as past measurements of all Cepheids on the SH0ES distance ladder. We limit the sample to the inner core and model the geometry to reduce errors in prior studies due to the nontrivial depth of this cloud. Without crowding present in ground-based studies, we obtain an unprecedentedly low dispersion of 0.102 mag for a period–luminosity (PL) relation in the SMC, approaching the width of the Cepheid instability strip. The new geometric distance to 15 late-type detached eclipsing binaries in the SMC offers a rare opportunity to improve the foundation of the distance ladder, increasing the number of calibrating galaxies from three to four. With the SMC as the only anchor, we find H 0 = 74.1 ± 2.1 km s−1 Mpc−1. Combining these four geometric distances with our HST photometry of SMC Cepheids, we obtain H 0 = 73.17 ± 0.86 km s−1 Mpc−1. By including the SMC in the distance ladder, we also double the range where the metallicity ([Fe/H]) dependence of the Cepheid PL relation can be calibrated, and we find γ = −0.234 ± 0.052 mag dex−1. Our local measurement of H 0 based on Cepheids and Type Ia supernovae shows a 5.8σ tension with the value inferred from the cosmic microwave background assuming a Lambda cold dark matter (ΛCDM) cosmology, reinforcing the possibility of physics beyond ΛCDM.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3