Characteristic Scales of Complexity and Coherence within Interplanetary Coronal Mass Ejections: Insights from Spacecraft Swarms in Global Heliospheric Simulations

Author:

Scolini CamillaORCID,Winslow Réka M.ORCID,Lugaz NoéORCID,Poedts StefaanORCID

Abstract

Abstract Many aspects of the 3D structure and evolution of interplanetary coronal mass ejections (ICMEs) remain unexplained. Here, we investigate two main topics: (1) the coherence scale of magnetic fields inside ICMEs, and (2) the dynamic nature of ICME magnetic complexity. We simulate ICMEs interacting with different solar winds using the linear force-free spheromak model incorporated into the EUHFORIA model. We place a swarm of ∼20,000 spacecraft in the 3D simulation domain and characterize ICME magnetic complexity and coherence at each spacecraft based on the simulated time series. Our simulations suggest that ICMEs retain a lower complexity and higher coherence along their magnetic axis, but that a characterization of their global complexity requires crossings along both the axial and perpendicular directions. For an ICME of initial half angular width of 45° that does not interact with other large-scale solar wind structures, global complexity can be characterized by as little as 7–12 spacecraft separated by 25°, but the minimum number of spacecraft rises to 50–65 (separated by 10°) if interactions occur. Without interactions, ICME coherence extends for 45°, 20°–30°, 15°–30°, and 0°–10° for B, B ϕ , B θ , and B r , respectively. Coherence is also lower in the ICME west flank compared to the east flank due to Parker spiral effects. Moreover, coherence is reduced by a factor of 3–6 by interactions with solar wind structures. Our findings help constrain some of the critical scales that control the evolution of ICMEs and aid in the planning of future dedicated multispacecraft missions.

Funder

National Aeronautics and Space Administration

European Union’s Horizon 2020

European Space Agency

KU Leuven

Fonds Wetenschappelijk Onderzoek

Belgian Federal Science Policy Office

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3