A Coronal Mass Ejection Impacting Parker Solar Probe at 14 Solar Radii

Author:

Braga Carlos R.ORCID,Jagarlamudi Vamsee KrishnaORCID,Vourlidas AngelosORCID,Stenborg GuillermoORCID,Nieves-Chinchilla TeresaORCID

Abstract

Abstract The relationship between CME properties in the corona and their interplanetary counterparts is not well understood. Until recently, a wide spatial gap existed between the two regions, which prevented us from disentangling the spatial and temporal evolution of CMEs. NASA’s Parker Solar Probe (PSP) has imaged multiple CMEs since its launch in 2018, but these events either intercepted the spacecraft far from the corona or completely missed it. Here we describe one of the first CMEs observed simultaneously by remote sensing and in situ instruments, and compare the corresponding measured properties, such as orientation, cross section diameter, density, and speed. The CME encounter occurred on 2022 June 2, while PSP was around 14 solar radii from the Sun center. We reconstruct the CME with forward modeling and determine its morphology and kinematics. The reconstruction suggests that PSP misses the CME apex but encounters its flank. The encounter time matches the period when the PSP in situ measurements indicate the passage of a CME. We also reconstruct the flux rope diameter and orientation using the in situ magnetic field measurements. The results are consistent with the CME reconstruction from imaging data. The close agreement between remote sensing and in situ analyses suggests that discrepancies found in past studies are more likely associated with the CME temporal evolution. We also find that the magnetic field of the CME flank extrapolated to 1 au is well below the average solar wind background and likely indistinguishable from it. This point could explain past events where the CMEs' interplanetary counterparts were not identified.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3