A Joint Microwave and Hard X-Ray Study toward Understanding the Transport of Accelerated Electrons During an Eruptive Solar Flare

Author:

Mondal SurajitORCID,Battaglia Andrea F.ORCID,Chen BinORCID,Yu SijieORCID

Abstract

Abstract The standard flare model, despite its success, is limited in comprehensively explaining the various processes involving nonthermal particles. One such missing ingredient is a detailed understanding of the various processes involved during the transport of accelerated electrons from their site of acceleration to different parts of the flare region. Here we use simultaneous radio and X-ray observations from the Expanded Owens Valley Solar Array and the Spectrometer/Telescope for Imaging X-rays on board the Solar Orbiter, respectively, from two distinct viewing perspectives, to study the electron transport processes. Through detailed spectral modeling of the coronal source using radio data and footpoint sources using X-ray spectra, we compare the nonthermal electron distribution at the coronal and footpoint sources. We find that the flux of the nonthermal electrons precipitated at the footpoint is an order of magnitude smaller than that trapped in the looptop, consistent with earlier works that primarily used X-ray for their studies. In addition, we find that the electron spectral indices obtained from X-ray footpoints are significantly softer than the spectral hardness of the nonthermal electron distribution in the corona. We interpret these differences based on transport effects and the difference in sensitivity of microwave and X-ray observations to different regimes of electron energies. Such an understanding is crucial for leveraging different diagnostic methods of nonthermal electrons simultaneously to achieve a more comprehensive understanding of the electron acceleration and transport processes of solar flares.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3