Inflated Eccentric Migration of Evolving Gas Giants I – Accelerated Formation and Destruction of Hot and Warm Jupiters

Author:

Rozner MorORCID,Glanz HilaORCID,Perets Hagai B.ORCID,Grishin EvgeniORCID

Abstract

Abstract Hot and warm Jupiters (HJs and WJs, correspondingly) are gas giants orbiting their host stars at very short orbital periods (P HJ < 10 days; 10 < P WJ < 200 days). HJs and a significant fraction of WJs are thought to have migrated from initially farther-out birth locations. While such migration processes have been extensively studied, the thermal evolution of gas giants and its coupling with migration processes are usually overlooked. In particular, gas giants end their core accretion phase with large radii, then contract slowly to their final radii. Moreover, intensive heating can slow the contraction at various evolutionary stages. The initial large inflated radii lead to faster tidal migration, due to the strong dependence of tides on the radius. Here, we explore this accelerated migration channel, which we term inflated eccentric migration, using a semi-analytical, self-consistent model of the thermal–dynamical evolution of the migrating gas giants, later validated by our numerical model (see the companion paper, paper II). We demonstrate our model for specific examples and carry out a population synthesis study. Our results provide a general picture of the properties of the formed HJs and WJs via inflated migration, and their dependence on the initial parameters/distributions. We show that the tidal migration of gas giants could occur much more rapidly then previously thought, and could lead to the accelerated destruction and formation of HJs and an enhanced formation rate for WJs. Accounting for the coupled thermal–dynamical evolution is therefore critical to understanding the formation of HJs/WJs, and the evolution and final properties of the population, and it plays a key role in their migration processes.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precise Transit Photometry Using TESS: Updated Physical Properties for 28 Exoplanets around Bright Stars;The Astrophysical Journal Supplement Series;2023-08-17

2. Measuring tidal dissipation in giant planets from tidal circularization;Monthly Notices of the Royal Astronomical Society;2023-07-28

3. A High-Eccentricity Warm Jupiter Orbiting TOI-4127;The Astronomical Journal;2023-05-10

4. Evidence for Hidden Nearby Companions to Hot Jupiters;The Astronomical Journal;2023-03-23

5. Sub-Jovian desert of exoplanets at its boundaries;Astronomy & Astrophysics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3