Abstract
Abstract
Being able to distinguish between galaxies that have recently undergone major-merger events, or are experiencing intense star formation, is crucial for making progress in our understanding of the formation and evolution of galaxies. As such, we have developed a machine-learning framework based on a convolutional neural network to separate star-forming galaxies from post-mergers using a data set of 160,000 simulated images from IllustrisTNG100 that resemble observed deep imaging of galaxies with Hubble. We improve upon previous methods of machine learning with imaging by developing a new approach to deal with the complexities of contamination from neighboring sources in crowded fields and define a quality control limit based on overlapping sources and background flux. Our pipeline successfully separates post-mergers from star-forming galaxies in IllustrisTNG 80% of the time, which is an improvement by at least 25% in comparison to a classification using the asymmetry (A) of the galaxy. Compared with measured Sérsic profiles, we show that star-forming galaxies in the CANDELS fields are predominantly disk-dominated systems while post-mergers show distributions of transitioning disks to bulge-dominated galaxies. With these new measurements, we trace the rate of post-mergers among asymmetric galaxies in the universe, finding an increase from 20% at z = 0.5 to 50% at z = 2. Additionally, we do not find strong evidence that the scattering above the star-forming main sequence can be attributed to major post-mergers. Finally, we use our new approach to update our previous measurements of galaxy merger rates
=
0.022
±
0.006
×
(
1
+
z
)
2.71
±
0.31
.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献