Searching for New Observational Signatures of the Dynamical Evolution of Star Clusters

Author:

Bhat B.ORCID,Lanzoni B.ORCID,Ferraro F. R.ORCID,Vesperini E.ORCID

Abstract

Abstract We present a numerical study, based on Monte Carlo simulations, aimed at defining new empirical parameters measurable from observations and able to trace the different phases of the dynamical evolution of star clusters. As expected, a central density cusp, deviating from the King model profile, develops during the core collapse (CC) event. Although the slope varies during the post-CC oscillations, the cusp remains a stable feature characterizing the central portion of the density profile in all post-CC stages. We then investigate the normalized cumulative radial distribution (nCRD) drawn by all the cluster stars included within one half of the tridimensional half-mass radius (R ≤ 0.5r h ), finding that its morphology varies in time according to the cluster’s dynamical stage. To quantify these changes we defined three parameters: A 5, the area subtended by the nCRD within 5% of the half-mass radius, P 5, the value of the nCRD measured at the same distance, and S 2.5, the slope of the straight line tangent to the nCRD measured at R = 2.5%r h . The three parameters evolve similarly during the cluster’s dynamical evolution: after an early phase in which they are essentially constant, their values rapidly increase, reaching their maximum at the CC epoch and slightly decreasing in the post-CC phase, when their average value remains significantly larger than the initial one, in spite of some fluctuations. The results presented in this paper suggest that these three observable parameters are very promising empirical tools to identify the star cluster’s dynamical stage from observational data.

Funder

MIUR

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3