Digging into the Galactic Bulge: Stellar Population and Structure of the Poorly Studied Cluster NGC 6316

Author:

Deras DanORCID,Cadelano MarioORCID,Ferraro Francesco R.ORCID,Lanzoni BarbaraORCID,Pallanca CristinaORCID

Abstract

Abstract High-resolution Hubble Space Telescope optical observations have been used to analyze the stellar population and the structure of the poorly investigated bulge globular cluster NGC 6316. We constructed the first high-resolution reddening map in the cluster direction, which allowed us to correct the evolutionary sequences in the color–magnitude diagram (CMD) for the effects of differential reddening. A comparison between the CMDs of NGC 6316 and 47 Tucanae revealed strikingly similar stellar populations, with the two systems basically sharing the same turnoff, subgiant branch, and horizontal branch morphologies, indicating comparable ages. The red giant branch in NGC 6316 appears slightly bluer than in 47 Tucanae, suggesting a lower metal content. This has been confirmed by the isochrone fitting of the observed CMD, which provided us with updated values of the cluster age, distance, average color excess, and metallicity. We estimated an absolute age of 13.1 ± 0.5 Gyr, consistent with the age of 47 Tucanae, an average color excess E(BV) = 0.64 ± 0.01, and a true distance modulus (mM)0 = 15.27 ± 0.03 that sets the cluster distance at 11.3 kpc from the Sun. In addition, the photometric estimate of the cluster metallicity suggests [Fe/H] ≈ −0.9, which is ∼0.2 dex smaller than that of 47 Tucanae. We also determined the gravitational center and the density profile of the system from resolved stars. The latter is well reproduced by a King model. Our results confirm that NGC 6316 is another extremely old relic of the assembly history of the Galaxy.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3