External Photoevaporation of Protoplanetary Disks: Does Location Matter?

Author:

Parker Richard J.ORCID,Alcock Hayley L.,Nicholson Rhana B.,Panić OljaORCID,Goodwin Simon P.

Abstract

Abstract Many theoretical studies have shown that external photoevaporation from massive stars can severely truncate, or destroy altogether, the gaseous protoplanetary disks around young stars. In tandem, several observational studies report a correlation between the mass of a protoplanetary disk and its distance to massive ionizing stars in star-forming regions, and cite external photoevaporation by the massive stars as the origin of this correlation. We present N-body simulations of the dynamical evolution of star-forming regions and determine the mass loss in protoplanetary disks from external photoevaporation due to far-ultraviolet and extreme-ultraviolet radiation from massive stars. We find that projection effects can be significant, in that low-mass disk-hosting stars that appear close to the ionizing sources may be fore- or background stars in the star-forming region. We find very little evidence in our simulations for a trend in increasing disk mass with increasing distance from the massive star(s), even when projection effects are ignored. Furthermore, the dynamical evolution of these young star-forming regions moves stars whose disks have been photoevaporated to far-flung locations, away from the ionizing stars, and we suggest that any correlation between disk mass and distance from the ionizing star is either coincidental, or due to some process other than external photoevaporation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3