Testing external photoevaporation in the σ-Orionis cluster with spectroscopy and disk mass measurements

Author:

Maucó K.,Manara C. F.,Ansdell M.,Bettoni G.,Claes R.,Alcala J.,Miotello A.,Facchini S.,Haworth T. J.,Lodato G.,Williams J. P.

Abstract

Context. The evolution of protoplanetary disks is regulated by an interplay of several processes, either internal to the system or related to the environment. As most of the stars and planets, including our own Solar System, have formed in massive stellar clusters that contain OB-type stars, studying the effects of UV radiation on disk evolution is of paramount importance. Aims. For this work, we tested the impact of external photoevaporation on the evolution of disks in the mid-age (~3–5 Myr) σ-Orionis cluster by conducting the first combined large-scale UV to IR spectroscopic and millimeter-continuum survey of this region. Methods. We studied a sample of 50 targets located at increasing distances from the central, massive OB system σ-Ori. We combined new spectra obtained with VLT/X-shooter, used to measure mass accretion rates and stellar masses, with new and previously published ALMA measurements of disk dust and gas fluxes and masses. Results. We confirm the previously found decrease in Mdust in the inner ~0.5 pc of the cluster. This is particularly evident when considering the disks around the more massive stars (≥0.4 M), where those located in the inner part (<0.5 pc) of the cluster have Mdust about an order of magnitude lower than the more distant ones. About half of the sample is located in the region of the acc versus Mdisk expected by models of external photoevaporation, namely showing shorter disk lifetimes than expected for their ages. The shorter disk lifetimes is observed for all targets with a projected separation from σ-Ori < 0.5 pc, proving that the presence of a massive stellar system affects disk evolution. Conclusions. External photoevaporation is a viable mechanism to explain the observed shorter disk lifetimes and lower Mdust in the inner ~0.5 pc of the σ-Orionis cluster, where the effects of this process are more pronounced. Follow-up observations of the low stellar mass targets are crucial to constrain disk dispersion timescales in the cluster and to confirm the dependence of the external photoevaporation process with stellar host mass. This work confirms that the effects of external photoevaporation are significant down to at least impinging radiation as low as ~104 G0.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3